No Image

Электродуговая печь переменного тока

СОДЕРЖАНИЕ
0 просмотров
12 марта 2020

Первые дуговые сталеплавильные печи, появившиеся в конце XIX века, были печами постоянного тока. Позже в течение многих десятилетий в черной металлургии доминировали печи переменного тока. И несмотря на достигнутые успехи, дуговые печи переменного тока обладают целым рядом недостатков:

  • они работают с относительно низким коэффициентом мощности,
  • являются источниками мощных помех в питающих энергосистемах,
  • вызывают сильную загазованность окружающей среды,
  • имеют высокий уровень шума.

Для устранения указанных недостатков с начала 80-х годов все большее распространение начинают находить дуговые печи постоянного тока.

До 1990 г. число этих печей было единицы, к началу 1993 г. в мире в эксплуатации находилось 46 дуговых печей постоянного тока, а к концу 1998 г. — более 130 дуговых сталеплавильных печей постоянного тока.

В проектировании и эксплуатации ДСП постоянного тока было использовано множество новых разработок как электротехнических и конструкторских, так и технологических: новые конструкции трансформаторов, выпрямителей, фурм, горелок, новые системы автоматизации и управления, способы вдувания кислорода, углерода, шлакообразующих, подогрева и загрузки шихты, дожигания технологических газов, донный внецентренный выпуск плавок, вспенивание шлаков, донная продувка ванны газами и т.д.

Продолжительность плавки в новых крупных печах составляет менее 60 мин и ожидается доведение ее в ближайшее время до 30 — 40 мин.

Основными отличиями печей постоянного тока различных фирм является количество подовых электродов — катодов и конструкция токопроводящего узла — анода. Многоэлектродные печи постоянного тока распространения не получили. Практически все работающие дуговые печи постоянного тока являются одноэлектродными.

По конструкции используемые токопроводящие узлы подины в основном можно разделить на четыре типа (в скобках — фирма-разработчик):

  • токопроводящая подина, охлаждение воздушное (АВВ Industrie AG);
  • многостержневой металлический подовый электрод, охлаждение воздушное (МАN GHH / Nippon Коkan);
  • многопластинчатый металлический подовый электрод, охлаждение воздушное (Deutshe Voest Alpine Industrieanlagenbau);
  • одностержневой металлический электрод, иногда несколько электродов, охлаждение водяное (Clecim).

Особых преимуществ у какого-либо из этих подовых электродов не выявлено; стойкость их, как правило, превышает 1200 плавок.

Силовая линия дуговых печей постоянного тока в отличие от трехфазных печей включает выпрямительный блок и сглаживающий реактор, снижающий эффект мерцания. Для питания постоянным током используют тиристорные и диодные преобразователи. Однозначного мнения о том. какой из этих преобразователей лучше, в настоящее время нет. В мире освоено производство мощных и компактных выпрямителей для печей любой емкости. В случае недостаточной единичной мощности преобразователей их объединяют в блоки для получения необходимых параметров источников питания. Источники питания могут собираться по схемам последовательного, параллельного либо параллельно-последовательного подключения. Это повышает надежность, так как при выходе из строя одного трансформатора процесс плавки может быть продолжен с использованием оставшегося. Кроме того, может быть реализован режим с повышенным напряжением при последовательном включении и повышенным током дуги при параллельном включении тиристорных секций без увеличения установленной мощности источником электропитания. В подине дуговой печи можно размещать несколько изолированных от корпуса электродов и создавать печи большой мощности, подключая каждый источник электропитания к определенному подовому электроду.

Печи постоянного тока имеют следующие преимущества по сравнению с печами переменного тока:

  • меньший удельный расход электродов на 50-60 %;
  • снижение уровня фликера на 50 %;
  • возможность подводить большую мощность;
  • более высокую надежность электрооборудования;
  • работа с длинными дугами;
  • перемешивание ванны под воздействием электродинамических сил;
  • упрощение технического обслуживания и сокращение трудозатрат;
  • равномерная тепловая нагрузка на футеровку печи;
  • снижение уровня шума на 15 дБ;
  • стабилизация технологии;
  • лучшее формирование колодцев при проплавлении шихты;
  • снижение угара легирующих элементов;
  • снижение содержания азота в стали:
  • уменьшение газовыделения и пылеобразоаания;
  • снижение расхода огнеупоров;
  • повышение производительности.

Однако, несмотря на широко рекламируемые преимущества печей постоянного тока, некоторые фирмы предпочитают устанавливать трехфазные печи.

Это обусловлено следующим:

  • капитальные затраты на печь переменного тока ниже;
  • суммарный расход электроэнергии практически одинаков;
  • торцовый расход электродов и воздействие на питающую сеть высокоимпедансных трехфазных печей и печей постоянного тока сближаются;
  • печи переменного тока имеют большую гибкость регулирования температуры ванны.

Недостатки дуговых печей постоянного тока:

  • работа на длинных дугах приводит к повышенным тепловым потерям (дуга постоянного тока характеризуется пониженным значением градиента потенциала в столбе дуги, что для обеспечения выделения в дуге требуемой мощности вызывает необходимость увеличения ее длины до 0,8 -1,0 м. После расплавления шихты это приводит к росту потоков излучения на стены и свод печи и увеличению тепловых потерь);
  • в дуговой печи постоянного тока требуются специальные меры по предотвращению отклонения дуги из-за явления магнитного дутья;
  • ввод в электрическую цепь полупроводникового источника снижает надежность установок и повышает их стоимость.

Аналогично не отвечает электротехнологическим требованиям и дуга переменного тока. В начальный период плавки дуга имеет небольшую длину, что повышает вероятность эксплуатационных коротких замыканий и увеличивает расход энергии, усиливает влияние на питающую сеть. В то же время дуга непрерывно перемещается, что расширяет колодцы и снижает остроту проблемы перегрева подины. По расплавлении шихты дуга переменного тока более эффективна (без учета расхода электродов).

Исследования показали, что КПД дуг переменного тока в зависимости от электрического и шлакового режимов изменяется в пределах 0,55 — 0,85, КПД дуг постоянного тока — в пределах 0.40 — 0,75, чем и объясняется больший, в некоторых случаях, удельный расход электроэнергии в дуговых печах постоянного тока.

Показатели работы современных дуговых печей постоянного и переменного тока близки, за исключением расхода электродов – на дуговых печах постоянного тока расход графитированных электродов примерно в два раза ниже чем на дуговых печах переменного тока.

В ближайшем будущем продолжится "соревнование" дуговых печей постоянного и переменного тока, будут строиться те и другие печи, но опережающими темпами будут строиться дуговые печи постоянного тока — примерно в два раза больше, чем новых дуговых печей переменного тока.

При определении типа строящейся печи в каждом конкретном случае проводится комплексный анализ проекта, где учитываются

  • географическое расположение площадки, на которой будет установлена печь;
  • вид используемой металлошихты;
  • наличие мощных источников электроэнергии;
  • обеспеченность топливом и кислородом;
  • экологические требования;
  • возможности рафинирования жидкого металла в агрегатах внепечной обработки и другие факторы.

При прочих равных условиях предпочтение отдается технологиям и агрегатам, характеризуемым меньшими издержками на сырьевые материалы и их транспортировку.

Читайте также:  Стрептокарпус фото цветов с названиями

2.2.1 Дуговые печи переменного и постоянного тока

Во всем мире при строительстве металлургических мини-заводов, как правило, предпочтение отдают дуговым электропечам трехфазного переменного тока с высоким полным электрическим сопротивлением контура, которые работают с вторичным напряжением 1000 В и более (ДСП) и дуговым печам постоянного тока (ДППТ) с одним катодом [45, 154 — 156]. В мире насчитывают около 1200 дуговых электропечей, из них около 15% составляют ДППТ [155]. Как показывает опыт промышленной эксплуатации, печи переменного и постоянного тока создаются в соответствии с единым принципом проектирования и управления, поэтому технология переплава металлошихты в этих печах и технико-экономические показатели плавки не имеют принципиальных отличий в силу одинакового принципа теплогенерации и перераспределения тепла в рабочем пространстве.

Несомненно, некоторые особенности применения постоянного тока для плавки стали положительно влияют на технологический процесс. Так, например, под воздействием электродинамических сил, возникающих при прохождении постоянного тока через ванну жидкого металла, происходит достаточно эффективное ее перемешивание. Перемешивание ванны ускоряет плавление, позитивно влияет на процессы окисления углерода, угар железа и рафинирование расплава. Изменяя положение катода, анода или используя специальные средства можно регулировать характеристики движения металла и интенсивность его перемешивания [157]. Кроме того, при прохождении постоянного тока через проводник отсутствует поверхностный эффект (скин-эффект), т.е. неравномерное распределение плотности электрического тока по сечению проводника. Такая неравномерность присуща только переменному току, причем степень ее растёт с увеличением площади сечения проводника и его электропроводности, следовательно, проводники электрического тока (жесткие шины, гибкие кабели, электроды) ДППТ могут иметь меньшее сечение при одинаковых тепловых потерях в сравнении с ДСП.

Вместе с тем, короткая сеть ДППТ, по крайней мере, в два раза длиннее одной фазы ДСП, поэтому масса короткой сети ДППТ обычно на 70-80 % выше. Наличие проводника, соединяющего анод печи с трансформаторной подстанцией определяет необходимость строительства и обслуживания шинной галереи под ванной печи. Из-за ввода в электрическую цепь тиристорного или диодного преобразователя капитальные затраты на печь постоянного тока увеличиваются, и в целом стоимость ДППТ в полтора раза выше, чем аналогичной ДСП.

Сопоставительные исследования свойств электрической дуги постоянного и переменного тока показали, что дуга постоянного тока характеризуется пониженным значением градиента потенциала в столбе, что для обеспечения выделения требуемой мощности вызывает необходимость увеличения ее длины до 0,8-1,0 м [158, 159]. В конце плавления шихты это приводит к росту потоков излучения на стены и свод печи и увеличению тепловых потерь. Поэтому, несмотря на более высокую, чем в трехфазных печах скорость нагрева и плавления металла, дуговая печь постоянного тока не в состоянии обеспечить существенного повышения производительности (табл. 2.2).

Таблица 2.2. Показатели работы высокопроизводительных ДСП №1 «Badiche Stahlwerke GmbH» [160], ДСП №2 «Nucor Yamato Steel» [147] и ДППТ «Peiner Trager GmbH» в 2000 году [84, 161]

Продолжение табл. 2.2

Установлено, что КПД дуги переменного и постоянного тока в зависимости от электрического и шлакового режимов изменяется в пределах 0,55 — 0,85 и 0,40 — 0,75, соответственно, чем и объясняется больший, в некоторых случаях, удельный расход электроэнергии в дуговых печах постоянного тока [159]. Кроме того, при эксплуатации дуговой печи постоянного тока необходимо принимать специальные меры по предотвращению отклонения дуги из-за явления магнитного «выдувания» дуги для предупреждения неравномерности износа футеровки стен. С целью снижения расхода огнеупоров, используют различные приемы, например: внецентренное расположение графитированного электрода, увеличение диаметра рабочего пространства печи и высоты стен и т.п. [162, 163]. Дуга переменного тока, наоборот, в силу меньшей длины, при горении в колодцах увеличивает вероятность эксплуатационных коротких замыканий, но по окончании плавления шихты работает более эффективно и легко поддается регулированию.

По мнению специалистов компании «Danieli», концепцию печи постоянного тока обычно выбирают с целью уменьшения расхода графитированных электродов. Однако, опыт показал, что одноэлектродная дуговая печь постоянного тока имеет ограниченное преимущество в сравнении с дуговой печью переменного тока с высоким импедансом. По расчетам в одноэлектродной ДППТ вместимостью свыше 80 т расход электродов может быть даже выше, чем в современной ДСП, вследствие ограниченной проводимости существующих типоразмеров электродов [156]. Известно, что на печах постоянного тока вместимостью более 80 т применяют графитированные электроды нестандартного диаметра – 700-800 мм [161]. В научной литературе появляется информация о том, что одноэлектродные печи исчерпали свои возможности по мощности.

Как правило, в рабочее пространство ДСП вводят в полтора — два раза больше кислорода, чем в ДППТ (табл. 2.2). Это объясняется тем, что последние имеют ограничения содержания кслорода в расплаве и, как следствие, интенсивности вдувания кислорода в ванну из-за снижения стойкости подовых электродов. По-видимому, повышение концентрации кислорода в расплаве вызывает интенсивное зарождение пузырей оксидов углерода на рабочей поверхности подового электрода, при этом их экранирующее воздействие снижает электрическую проводимость подового электрода, что приводит к его перегреву.

Наличие подовых электродов увеличивает толщину и массу подины, усложняет конструкцию, текущий ремонт и повышает расход подовых огнеупоров, однако, это компенсируется сниже-нием расхода стеновых огнеупоров. Поэтому принято считать, что суммарный расход огнеупоров для электропечей постоянного тока ниже и составляет в среднем около 4 против 6 кг/т для крупных трехфазных печей [136].

Пионерами разработки ДППТ являются компании «АSЕА» (Швеция), «ВВС» и «GHH» (США), «CLECIM» (Франция), «Nippon Kokan», «Dai-Do» (Япония), «Voest-Alpine» (Австрия), «Itaimpianti» (Италия) и др.

Практически все дуговые печи постоянного тока являются одноэлектродными и отличаются между собой количеством и конструктивным исполнением подового электрода (анода). Подовый электрод является ключевым элементом конструкции ДСППТ. Не вдаваясь в технические детали, отметим, что различные печестроительные компании в силу сложившихся патентных ограничений устанавливают следующие типы анодов:

  • «токопроводящая подина», охлаждение воздушное («ABB Industrie AG»);
  • многостержневой металлический подовый электрод, охлаждение воздушное («MAN GHH/Nippon Kokan»);
  • многопластичный металлический подовый электрод, охлаждение воздушное («Deutshe Voest Alpine Industrieanla-genbau»);
  • одностержневые металлические электроды, охлаждение водяное («Clecim»).

Особых преимуществ у какого-либо из приведенных типов подовых электродов не выявлено; гарантируемая стойкость их, как правило, не превышает 1000 плавок.

Cпециалисты компании «Danieli» формулируют наиболее важные требования к конструкции подового электрода следующим образом [156]:

  • длительная компания службы между ремонтами;
  • легкое и быстрое обслуживание;
  • быстрый запуск печи из холодного состояния;
  • быстрый запуск печи из горячего состояния после осмотра подины;
  • стойкость при интенсивной кислородной продувке расплава;
  • способность проводить электрический ток большой силы;
  • надежная, устойчивая и безопасная эксплуатация;
  • возможность контроля условий прохождения тока через подовый электрод;
  • возможность непрерывного контроля тепловых условий работы анода.
Читайте также:  Как посадить канадскую ель

Очевидно, что конструкция некоторых элементов ДППТ, в том числе и электрических, является в настоящее время предметом дискуссий и находится в стадии совершенствования [165].

Определить явное преимущество того или иного типа печи в настоящее время не представляется возможным. Производители стали сами выбирают тип печи исходя из условий их эксплуатации, наличия или отсутствия мощных электропитающих сетей, обеспеченности металлошихтой различного вида (лом, твердый или жидкий чугун, железо прямого восстановления и т.п.) и качества, обеспеченности топливом, кислородом и других факторов.

Например, германская акционерная компания «Badische Stahlwerke GmbH» перед установкой новой электропечи провела собственные исследования, на основании которых выбрала тра-диционное техническое решение, так как считает, что:

  • в распоряжении пока нет новых технологий с очевидными существенными преимуществами;
  • применение традиционной технологии позволяет ограничить риск, например, запрета эксплуатации агрегата органами по охране окружающей среды;
  • изменение технологических режимов процесса плавки, которые влияют на выбросы, должно быть минимальным;
  • необходимо свести к минимуму любой риск потерь в производстве и появление дополнительных издержек;
  • предпочтение необходимо отдавать тем технологиям, которые уже освоены персоналом завода.

В январе 1997 г. на мини-заводе «Badische Stahlwerke GmbH» начала работать 80-т ДСП изготовленная компаниями «Concast Standard АG» и «Badische Stahl Engineering GmbH». Замена старой печи на новую заняла четыре недели, а в течение 2000 года в ДСП выплавили более 10 000 плавок [45].

Одним из существенных факторов ограничения мощности печного трансформатора электропечи, зачастую является величина мощности короткого замыкания питающих электрических сетей. Поэтому на сегодняшний день ощутим существенный прогресс в электрической конструкции ДСП. Печи оборудованы специальными электрическими устройствами, которые предназначены для снижения воздействия на питающие электросети [165]. Эти устройства можно разделить на две основные группы: позволяющие компенсировать электрические помехи, вызванные технологическим процессом плавки, и улучшающие динамические характеристики печного электрооборудования. Так, ДСП с высоким электрическим сопротивлением вторичного контура позволяет вводить в рабочее пространство большее количество тепла за счет стабилизации горения дуги. При неизменной мощности трансформатора повышение напряжения дуги позволяет снизить величину силы тока, а значит и электродинамические силы, действующие на электроды, электрододержатели и гибкие электрические кабели, т.е. снижается риск пробоя их изоляции и уменьшается механический износ. Работа с пониженной величиной силы тока дуги уменьшает расход электродов и электрические потери. Известно, что колебание длины дуги вызывает перепады величины силы тока, как в диапазоне низких частот, так и в диапазоне высоких частот. Работа печи с длинной дугой и высоким сопротивлением предпочтительна по причине меньших относительных колебаний ее длины, а, следовательно, и перепадов величины силы тока [166].

В металлургии электродуговая печь является незаменимым оборудованием. Основное ее назначение – это переплавка металлов под воздействием высокой температуры. Такие тепловые агрегаты бывают различных видов. Они отличаются своими конструктивными характеристиками и особенностью использования.

Сфера применения

Первые дуговые печи изобрели еще в девятнадцатом веке. Использовались они для выплавки металлов. Со временем оборудования существенно усовершенствовали. На сегодняшний день дуговые печи стали незаменимыми в металлургической промышленности.

Процесс переплавки стали в дуговых печах осуществляется за счет высокого температурного режима, который достигается посредством электрической дуги. Таким образом, происходит преобразование энергии электрической в тепловую.

Благодаря высоким техническим характеристикам дуговые печи применяют для создания различных сплавов, которые используют в своих нуждах оборонные и авиационные структуры. С помощью такого теплового оборудования можно получить однородные сплавы любых металлов.

Некоторые виды дуговых печей используют для определения физико-химических анализов. Такие исследования в основном проводятся для выявления количества составляющих различных материалов.

Устройство электродуговой печи

Независимо от конструктивных особенностей все дуговые печи устроены практически одинаково. Тепловые сталеплавильные агрегаты состоят из таких основных элементов:

  • механическое устройство;
  • электрический отдел;
  • автоматизированное управление системой;
  • приспособление для подачи в рабочую часть материалов;
  • емкость, в которой осуществляется плавка;
  • система удаления отходов;
  • газоочистка.

Цилиндрической формы корпус печи включает в себя разъемные части – кожух и днище. Каркас имеет высокую устойчивость к значительным температурным воздействиям.

Конструкция имеет держатели, в которые устанавливаются графитированные электроды. К ним подсоединены подающие электроэнергию кабели. В процессе работы печи между электродами образуется постоянная дуга. Благодаря ей в устройстве возникают температура, которая обеспечивает плавку металлов.

Как выглядит электродуговая печь

К закрытом корпусе печной конструкции встроены приборы, предназначенные для автоматического управления всей системой. Контроль процесса плавки осуществляется с помощью дверок. Для удаления шлаков в каркасе находится несколько полостей. Через них также осуществляется внос различных добавок для корректировки состава металла.

Погрузка шихты в печь может осуществляться через рабочее окно или сверху. Устройства с подачей материала через специальный проем обычно небольшого размера. Загружать металлический лом в такие агрегаты модно ручным способом с помощью широкой лопаты.

Печи с верхней подачей шихты – это более мощные и габаритные устройства. Они имеют достаточно сложную конструкцию. Механизм устройства может быть трех видов:

  • поворотный свод;
  • выкатывающийся корпус;
  • откатываемый свод.

Наиболее распространены дуговые агрегаты с поворотным механизмом.

Принцип работы сталеплавильных электродуговых агрегатов

Основной функцией дуговых печей является выделение тепла дуге, за счет высокого скопления электроэнергии. Благодаря этому выполняется плавка металла со значительной скоростью нагрева.

Гореть дуга может как в парах перерабатываемого материала, так и в обычной атмосфере. Самыми востребованными в промышленной сфере являются электродуговые сталеплавильные печи. Для производства стали расходуется вторичное сырье – лом. Процесс его расплавки состоит из нескольких этапов:

  • подымается свод;
  • загружается в печь шихта с помощью специального крана;
  • свод закрепляется на место;
  • подается электрическое питание на электроды;
  • электропроводники касаются загруженного в агрегат лома;
  • образуется межфазное замыкание;
  • срабатывает автоматический подъем держателей с электродами;
  • происходит загорание электрической дуги.

Таким образом, начинается работа печи, которая происходит при высокой температуре мощности. Состоит она из таких основных стадий:

  1. Расплавление металлического лома. Накаленная шихта покрывается защитной пленкой, которая преграждает к материалу доступ вредных газов. При этом осуществляется впитывание различных плохо влияющих на качество металла веществ.
  2. Процесс окисления. Происходит корректировка вредных элементов. В это время повышается температура в агрегате. Ее значение становится на 120 градусов выше установленного для плавки металла предела. Фосфор и сера должны занимать в общем составе не более 0,15 процентов. Также осуществляется контроль уровня водорода и азота.
  3. Восстановление. С материала устраняются элементы серы, и состав металла доводится до нормативных показателей.
Читайте также:  Таблица для нагрузочной вилки

Виды и характеристика электродуговых печей

Современные дуговые печи бывают различных размеров и имеют отличительный набор функций.

Дуговые печи косвенного действия

Горение дуги в таких печах происходит между электродами, которые находятся над расплавленной массой. За счет этого осуществляется тепловой обмен между материалом и источником передачи энергии. Излучение, исходящее от дуги, а также конвекция позволяет нагреть металл до необходимой для его плавки температуры.

Дуговые печи косвенного действия оснащены таким электрооборудованием:

  • электропривод механизма подач расходуемых электродов;
  • трансформатор;
  • регулировочное устройство.

Такие печи бывают емкостью 0,5 и 0,25 тонн. Максимальная мощность силового трансформатора может быть 600 КВ/А.

Поступление тока от трансформаторной подстанции к электродам осуществляется посредством гибких кабелей. Регулировка дистанции между электрическими проводниками производится за счет автоматизированного управления.

В электродуговых печах косвенного действия невысокий коэффициент выделения угара и испарения металла. Снижение выхода парообразных веществ достигается за счет высокого расположения эклектической дуги от материала для расплавки.

Используют дуговые косвенные печи для переплава различных цветных металлов и их сплавов. Часто такое тепловое оборудование при выплавке некоторых видов никеля и чугуна.

Косвенные дуговые печи сравнительно небольшие и в них невозможно осуществлять все процессы переплавки металлов, так как некоторые сплавы требуют большей мощности и более высокого температурного режима.

Дуговые печи прямого действия

В таких печных устройствах дуга образуется между электрическим проводником и расплавленным металлом, который благодаря этому нагревается. За чет прямого контакта между электродом и материалом происходит высокое испарение металла.

Электродуговые печи прямого действия являются достаточно мощным оборудованием, которое способно работать на трехфазном токе. Они выделяются высокой производительностью и применяются в основном для выплавки в слитки различных тугоплавких металлов, включая конструкционные и высоколегированные стали.

Электродуговая печь прямого действия

Электропечь оснащена механизмами с гидравлическим или электромеханическим приводом, которые позволяют осуществлять наклоны для слива расплавленной стали, поворачивать и поднимать свод, а также перемещать электроды. К держателям проводников ток поступает за счет охлаждаемых воздух медных труб или шин.

Процесс зажигания электродов производится посредством снижения их к расплавленному металлу. После этого во время подъема проводников образуется электрическая дуга.

Дуговые печи сопротивления

Особенностью печей сопротивления является то, что дуга образуется внутри переплавляемого материала. Шихта может быть направлено относительно электрического разряда параллельно или последовательно.

Дуговые печи сопротивления не имеют функции наклона. Расплавленная масса проходит через специальное отверстие – летку. Электроды расположены в конструкции вертикально. Они имеют сравнительно большие размеры. Благодаря этому агрегат может работать с большой мощностью и при значительной величине тока.

В печах данного вида плавка металлов происходит с высоким показателем удельного сопротивления. Такое оборудование используется для плавления и восстановления руды. С помощью дуговых печей сопротивления можно получить сплавы чугуна, карбида, абразивов, кальция, а также никелевого штейна. Тепловые установки сопротивления в отличие от других видов дуговых печей способны доводить температурный режим до запредельных показателей.

Вакуумные дуговые печи

Такие агрегаты относятся к оборудованию прямого действия. Дуга в вакуумных печах горит в парах или инертном газе переплавляемого металла. Процесс происходит при низком давлении. Различают два типа вакуумных печей:

  1. С расходуемым электродом. Дуга в таких устройствах горит между переплавляемым электрическим проводником и ванной жидкого металла.
  2. С нерасходуемым электродом. Электрический разряд возникает между графитовым электропроводником и металлом, который расплавляется.

Как в первом, так и втором варианте плавление осуществляется в вакуумной камере. Все нагревающиеся элементы такого оборудования охлаждаются с помощью воды. Благодаря этому в вакуумных печах можно осуществлять различные действия при достаточно высоких температурах.

Агрегаты с нерасходуемым электродом практически не используются в промышленности. Основным их назначением является выплавка небольшого размера слитков в лабораторных условиях. Они являются хорошим инструментом для проведения различных анализов.

Пример электродуговой печи

Дуговые вакуумные печи с расходуемым электродом обширно применяются в промышленных целях. В таких устройствах во время работы с металлом происходят такие процессы:

  • плавление;
  • восстановление;
  • раскисление;
  • кристаллизация.

При этом при высокой температуре газовые летучие примеси удаляются, и происходит распад неустойчивых соединений. Благодаря этому в вакуумных дуговых печах можно получить материал с низким содержанием неметаллических примесей и газов.

Вакуумные печи используют в промышленных целях в таких отраслях как ракетостроение и атомная энергетика. С помощью такого оборудования можно получить слитки массой более 50 тонн.

Плазменно-дуговые печи

В таких установках металл нагревается за счет проходящей вместе со струей плазмы инертного газа электрической дуги. Такой процесс обеспечивает чистоту расплавляемого материала, а также позволяет значительно увеличить производительность печного оборудования.

В плазменно-дуговых печах происходит выплавка металлов с невысоким содержанием кислорода. Процесс плавления осуществляется в нейтральной атмосфере, что позволяет создать все условия для максимального выхода газов. Выплавка металла происходит с высокой скоростью.

Пламенно–дуговые печи используют для изготовления стали и сплавов высокого качества. Их применение обходится намного дешевле выплавки металла в вакуумных печах.

Преимущества и недостатки

Применение электродуговых печей для выплавки стали широко используется в металлургической промышленности. Основными преимуществами использования такого оборудования является возможность проведения таких операций:

  • расплавка шихты независимо от ее состава;
  • быстрый нагрев металла в печи;
  • регулировка температурного режима;
  • раскисление металла и получение в результате материала с низким содержанием примесей.

При переплавке стали в печном агрегате создаются все условия для снижения угара легирующих компонентов. Это обеспечивает снизить потери металлов в результате окисления при высоких температурах.

Электродуговые агрегаты широко используются в промышленных целях для переплавки различных металлов. С их помощью можно получить качественные крепкие стальные сплавы. Эффективность работы дуговой печи во многом зависит от качества теплового прибора. Поэтому приобретать следует надежное оборудование у известных и проверенных производителей.

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
Adblock detector