No Image

Что такое свободные электроны

СОДЕРЖАНИЕ
0 просмотров
12 марта 2020

Название «электрон» происходит от греческого слова ήλεκτρον, означающего «янтарь»: ещё в древней Греции естествоиспытателями проводились эксперименты — куски янтаря тёрли шерстью, после чего те начинали притягивать к себе мелкие предметы. Термин «электрон» как название фундаментальной неделимой единицы заряда в электрохимии был предложен [2] Дж. Дж. Стоуни (англ.) в 1894 (сама единица была введена им в 1874). Открытие электрона как частицы принадлежит Дж. Дж. Томсону, который в 1897 установил, что отношение заряда к массе для катодных лучей не зависит от материала источника. (см. Открытие электрона)

Использование

В большинстве источников низкоэнергетичных электронов используются явления термоэлектронной эмиссии и фотоэлектронной эмиссии. Высокоэнергетичные, с энергией от нескольких кэВ до нескольких МэВ, электроны излучаются в процессах бета-распада и внутренней конверсии радиоактивных ядер. Электроны, излучаемые в бета-распаде, иногда называют бета-частицами или бета-лучами. Источниками электронов с более высокой энергией служат ускорители.

Движение электронов в металлах и полупроводниках позволяет легко переносить энергию и управлять ею; это является одной из основ современной цивилизации и используется практически повсеместно в промышленности, связи, информатике, электронике, в быту. Скорость дрейфа электронов в проводниках очень мала(

0,1-1 мм/с), однако электрическое поле распространяется со скоростью света. В связи с этим ток во всей цепи устанавливается практически мгновенно.

Пучки электронов, ускоренные до больших энергий, например, в линейных ускорителях, являются одним из основных средств изучения строения атомных ядер и природы элементарных частиц. Более прозаическим применением электронных лучей являются телевизоры и мониторы с электронно-лучевыми трубками (кинескопами). Электронный микроскоп также использует способность электронных пучков подчиняться законам электронной оптики. До изобретения транзисторов практически вся радиотехника и электроника были основаны на вакуумных электронных лампах, где применяется управление движением электронов в вакууме электрическими (иногда и магнитными) полями. Электровакуумные приборы продолжают ограниченно использоваться и в наше время; наиболее распространённые применения — магнетроны в генераторах микроволновых печей и вышеупомянутые электронно-лучевые трубки в телевизорах и мониторах.

Электрон как квазичастица

Если электрон находится в периодическом потенциале, его движение рассматривается как движение квазичастицы. Его состояния описываются квазиволновым вектором. Основной динамической характеристикой в случае квадратичного закона дисперсии является эффективная масса, которая может значительно отличаться от массы свободного электрона и в общем случае является тензором.

Электрон и Вселенная

Известно [3] , что из каждых 100 нуклонов во Вселенной, 87 являются протонами и 13 — нейтронами (последние в основном входят в состав ядер гелия). Для обеспечения общей нейтральности вещества число протонов и электронов должно быть одинаково. Плотность барионной (наблюдаемой оптическими методами) массы, которая состоит в основном из нуклонов, достаточно хорошо известна (один нуклон на 0,4 кубического метра) [4] . С учётом радиуса наблюдаемой Вселенной (13,7 млрд световых лет) можно подсчитать, что число электронов в этом объёме составляет

Электрон в произведениях мировой культуры

Известное стихотворение Валерия Брюсова «Мир электрона» было написано 13 августа 1922 г. [1]. Его первое четверостишие:

Быть может, эти электроны
Миры, где пять материков,
Искусства, знанья, войны, троны
И память сорока веков!

Примечания

  1. Фундаментальные константы, утверждённые NIST.
  2. Stoney, G. Johnstone, «Of the ‘Electron,’ or Atom of Electricity». Philosophical Magazine. Series 5, Volume 38, p. 418—420 October 1894.
  3. Richard N. BoydBig bang nucleosynthesis // Nuclear Physics A. — 2001. — Т. 693. — № 1-2. — С. 249-257.
  4. ASTROPHYSICAL CONSTANTS AND PARAMETERS

Литература

  • Все известные свойства электрона систематизированы в обзоре Particle Data Group [2].

См. также

Электрон | Позитрон | Фотон
Аномальный магнитный дипольный момент
Позитроний

Лептоны: Электрон • Позитрон • Мюон • Тау-лептон • Нейтрино

Калибровочные бозоны Фотоны • W- и Z-бозоны • Глюоны До сих пор не обнаружены Бозон Хиггса • Гравитон • Другие гипотетические частицы
Читайте также:  Строить дачный домик своими руками

Wikimedia Foundation . 2010 .

Смотреть что такое "Электроны" в других словарях:

электроны — žibintūnės elektronos statusas T sritis zoologija | vardynas taksono rangas gentis atitikmenys: lot. Electrona rus. электроны ryšiai: platesnis terminas – žibintūninės siauresnis terminas – antarktinė elektrona siauresnis terminas – mažažiotė… … Žuvų pavadinimų žodynas

ЭЛЕКТРОНЫ ПРОВОДИМОСТИ — делокализованные валентные электроны твердого тела. По энергии это электроны частично заполненных разрешенных энергетических зон (зон проводимости, см. Зонная теория). Электроны проводимости носители заряда в металлах и полупроводниках … Большой Энциклопедический словарь

ЭЛЕКТРОНЫ ПРОВОДИМОСТИ — электроны твёрдого тела, упорядоченное движение к рых (дрейф) обусловливает электропроводность. В твёрдых телах часть электронов (как правило, валентные) отрывается от своих атомов. Области разрешённых значений энергии делокализован ных… … Физическая энциклопедия

ЭЛЕКТРОНЫ ПРОВОДИМОСТИ — электроны металлов и полупроводников, упорядоченное движение к рых обусловливает электропроводность. В конденсиров. средах часть эл нов (как правило, валентные) отрывается от своих атомов (делокализируется). Области разрешённых значений энергии… … Физическая энциклопедия

электроны проводимости — делокализованные валентные электроны твердого тела. По энергии это электроны частично заполненных разрешённых энергетических зон (зон проводимости, см. Зонная теория). Электроны проводимости носители заряда в металлах и полупроводниках. * * *… … Энциклопедический словарь

Электроны проводимости — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

ЭЛЕКТРОНЫ ПРОВОДИМОСТИ — делокализованные валентные электроны тв. тела. По энергии это электроны частично заполненных разрешённых энергетич. зон (зон проводимости, см. Зонная теория). Э. п. носители заряда в металлах и полупроводниках … Естествознание. Энциклопедический словарь

электроны проводимости — la >Chemijos terminų aiškinamasis žodynas

Конверсионные электроны — электроны, испущенные атомом при конверсии внутренней (См. Конверсия внутренняя) … Большая советская энциклопедия

медленные вторичные электроны — 3.21 медленные вторичные электроны; МВЭ: Группа вторичных электронов, возникающая в результате взаимодействия электронного зонда с исследуемым объектом, энергия которых не превышает 50 эВ (≈ 8×10 18 Дж). Источник … Словарь-справочник терминов нормативно-технической документации

В металле, как и во всех твёрдых телах, каждый атом занимает определённое место. Правда, при некоторых условиях атомы твёрдых тел могут покидать свои места, но во всяком случае они долгое время остаются «привязанными» к определённому месту. В зависимости от температуры каждый атом более или менее сильно колеблется около этого места, не удаляясь от него сколько-нибудь далеко. В отличие от других твёрдых тел металлы обладают одной интересной особенностью: в пространстве между атомами металлов движутся свободные электроны, то-есть электроны, не связанные с определёнными атомами.

Откуда берутся такие свободные электроны?

Дело в том, что в атомах не все электроны одинаково прочно удерживаются ядром. В электронных оболочках атомов металлов всегда есть один, два или три электрона, очень слабо связанных с ядром. Поэтому, например, при растворении различных солей входящие в их состав атомы металлов легко отдают эти электроны другим атомам, а сами превращаются в положительные ионы. Отрыв электронов от атомов происходит и в куске любого металла, но все электроны, утерявшие связь с атомами, остаются в самом металле между образовавшимися ионами.

Число свободных электронов в металле огромно. Их примерно столько же, сколько атомов. Тем не менее весь кусок металла остаётся, конечно, незаряженным, так как положительный заряд всех ионов в точности равен отрицательному заряду всех электронов.

Таким образом, строение металла мы может себе представить в таком виде. Атомы металла, потерявшие по 1—2 электрона, стали ионами. Они сравнительно прочно сидят на своих местах и образуют, можно сказать, жёсткий «скелет» куска металла. Между ионами быстро движутся по всем направлениям электроны. Некоторые из электронов при движении тормозятся, другие ускоряются, так что среди них всегда есть и быстрые и медленные.

Читайте также:  Как правильно делать яйцо пашот

Движение свободных электронов вполне беспорядочно. Нельзя уловить в нём никаких струек или потоков, никакой согласованности. Свободные электроны движутся в металле приблизительно так, как мечутся мошки в тёплом воздухе летним вечером: в рое каждая из мошек летает сама по себе то быстрее, то медленнее, а весь рой стоит на месте.

Среди беспорядочно движущихся электронов всегда есть такие, которые летят по направлению к поверхности металла. Будут ли они вылетать из металла? Ведь если оставить открытым сосуд с газом, молекулы которого также находятся в беспорядочном движении, как и электроны в металле, то молекулы газа быстро рассеются в воздухе. Однако электроны в обычных условиях не вылетают из металла. Что же их удерживает? Притяжение ионами. Когда электрон поднимается немного над поверхностью металла, над ним уже нет ионов, а внизу, на поверхности, есть. Эти ионы притягивают поднявшийся

металле, как и во всех твёрдых телах, каждый атом занимает определённое место. Правда, при некоторых условиях атомы твёрдых тел могут покидать свои места, но во всяком случае они долгое время остаются «привя­занными» к определённому месту. В зависимости от тем­пературы каждый атом более или менее сильно колеб­лется около этого места, не удаляясь от него сколько — нибудь далеко. В отличие от других твёрдых тел металлы обладают одной интересной особенностью: в пространстве между атомами металлов движутся свободные электроны, то-есть электроны, не связанные с определёнными атомами.

Откуда берутся такие свободные электроны?

Дело в том, что в атомах не все электроны одинаково прочно удерживаются ядром. В электронных оболочках атомов металлов всегда есть один, два или три электрона, очень слабо связанных с ядром. Поэтому, например, при растворении различных солей входящие в их состав атомы металлов легко отдают эти электроны другим ато­мам, а сами превращаются в положительные ионы. Отрыв электронов от атомов происходит и в куске любого ме­талла, но все электроны, утерявшие связь с атомами, остаются в самом металле между образовавшимися ионами.

Число свободных электронов в металле огромно. Их примерно столько же, сколько атомов. Тем не менее весь кусок металла остаётся, конечно, незаряженным, так как положительный заряд всех ионов в точности равен отри­цательному заряду всех электронов.

Таким образом, строение металла мы может себе представить в таком виде. Атомы металла, потерявшие по 1—2 электрона, стали ионами. Они сравнительно прочно сидят на своих местах и образуют, можно сказать, жёсткий «скелет» куска металла. Между ионами быстро движутся по всем направлениям электроны. Некоторые из электронов при движении тормозятся, другие ускоря­ются, так что среди них всегда есть и быстрые и мед­ленные.

Движение свободных электронов вполне беспорядочно. Нельзя уловить в нём никаких струек или потоков, ника­кой согласованности. Свободные электроны движутся в металле приблизительно так, как мечутся мошки в тёп­лом воздухе летним вечером: в рое каждая из мошек ле­тает сама по себе то быстрее, то медленнее, а весь рой стоит на месте.

Среди беспорядочно движущихся электронов всегда есть такие, которые летят по направлению к поверхности металла. Будут ли они вылетать из металла? Ведь если оставить открытым сосуд с газом, молекулы которого также находятся в беспорядочном движении, как и электроны в металле, то молекулы газа быстро рассеются в воздухе. Однако электроны в обычных условиях не вы­летают из металла. Что же их удерживает? Притяжение ионами. Когда электрон поднимается немного над по­верхностью металла, над ним уже нет ионов, а внизу, на поверхности, есть. Эти ионы притягивают поднявшийся электрон, и он падает обратно на поверхность металла, как падает на землю брошенный вверх камень.

Читайте также:  Как правильно сделать уборку в квартире

Если бы камень имел достаточно большую началь­ную скорость, он мог бы преодолеть притяжение Земли и

Рис. 7. Вырванные из раскалённого катода электроны устремляются к аноду только тогда, когда анод заряжен положительно.

Улететь в межпланетное пространство, как улетает пу­шечное ядро в романе Жюль Верна. Очень быстрые элек­троны тоже могут преодолеть силы электрического притя­жения и покинуть металл. Это и происходит при нагре­вании.

При нагревании металла усиливается движение не только атомов, но и электронов, и при высокой темпера­туре из металла вылетает столько электронов, что их поток можно обнаружить. Посмотрите на рис. 7. На нём изображена необычная электрическая лампочка. В её баллоне на некотором расстоянии от нити накала укреп­лена металлическая пластинка. Пластинка называется анодом, а нить — катодом. К одному концу нити (всё равно к какому) и к аноду присоединена батарея, а между батареей и анодом в так называемую «анодную» цепь включён прибор, показывающий наличие электрического тока. Прибор этот называется гальванометром. Сама нить лампы включена в электрическую сеть и раскалена. Если анод соединён с отрицательным полюсом батареи, а нить с положительным, то тока в анодной цепи не будет (рис. 7 слева). Теперь попробуем поменять полюсы и присоеди­ним пластинку к «плюсу» батареи. В цепи сейчас же появится ток (рис. 7 справа). Этот опыт показывает, что раскалённая нить лампы действительно испускает отри­цательные заряды — электроны, которые отталкиваются от анода, если он заряжен отрицательно (рис. 7 слева), и увлекаются электрическими силами к аноду, если он присоединён к положительному полюсу батареи (рис. 7 справа).

Испускание электронов накалёнными металлами имеет огромное практическое значение. Достаточно сказать, что оно используется во всех радиолампах (о радиолампах мы ещё будем говорить в последнем разделе книжки).

Увеличить энергию электронов и заставить их выле­тать из металла можно не только нагреванием, но и освещением. Такие явления изучил в 1888 году русский физик, профессор Московского университета А. Г. Сто­летов. Поток световых лучей несёт энергию, и если свет падает на металл, то часть этой энергии поглощается ме­таллом и передаётся электронам. Получив добавочную энергию, некоторые электроны преодолевают притяжение ионов и вылетают из металла. Это явление называется фотоэлектрическим эффектом. Фотоэффект используется в очень важном для техники приборе — фотоэлементе. Схема фотоэлемента показана на рисунке 8.

Стеклянный баллон, из которого удалён воздух, по­крыт изнутри слоем металла, обычно натрия, калия или цезия, подвергнутого особой обработке (из этих металлов электроны легко вырываются при действии видимого света); не покрыто металлом только небольшое окошечко для пропускания света. Слой металла служит катодом фотоэлемента (фотокатодом). В середине баллона поме­щается или тонкая металлическая проволочка или сетка. Это — анод. Фотокатод соединяется с отрицательным по­люсом батареи, а анод — с положительным. Как только на фотокатод упадут световые лучи, некоторые электроны приобретают большую энергию и вырываются с его по­верхности. Сила электрического притяжения гонит их к аноду, и в цепи появляется ток. Если же освещение пре­кращается, ток исчезает[1]). Заметим, что обоими описан­ными способами удается извлекать из металлов только очень небольшую часть имеющихся в них свободных электронов.

Рис. 8. Схема действия фотоэлемента.

Легко понять, что электризация трением представляет собой процесс вырывания электронов. Так, например, при трении стекла о кожу электроны, извлечённые из стекла, переходят на кожу.

Итак, мы знаем, что электроны можно извлечь из ато­мов. Посмотрим теперь, как можно управлять электро­нами, покинувшими атомы.

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
Adblock detector