No Image

Что называют электромагнитными волнами

СОДЕРЖАНИЕ
0 просмотров
12 марта 2020

Различные виды механических волн, как поперечных, так и продольных, объединяет одно общее свойство: они могут распространяться только в непрерывной среде, только в твердых телах, жидкостях или газах. В вакууме, т. е. в пустоте, механические волны распространяться не могут.

Английский физик Джеймс Максвелл (1831—1879) на основании изучения экспериментальных работ Фарадея по электричеству и магнетизму в 1864 г. высказал гипотезу о существовании в природе особых волн, способных распространяться в вакууме. Эти волиы Максвелл назвал электромагнитными волнами.

Для выдвижения гипотезы о возможности возникновения электромагнитных волн Максвелл имел следующие основания. В 1831 г. Фарадей установил, что любое изменение магнитного потока в контуре вызывает появление в нем индукционного тока. Максвелл объяснил появление индукционного тока возникновением вихревого электрического поля при любом изменении магнитного поля. Далее он предположил, что электрическое поле обладает такими же свойствами: при любом изменении электрического поля в окружающем пространстве возникает вихревое магнитное поле. Однажды начавшийся процесс взаимного порождения магнитного и электрического полей должен далее непрерывно продолжаться и захватывать все новые и новые области в окружающем пространстве (рис. 238).

Процесс распространения переменных магнитного и электрического полей и есть электромагнитная волна. Связь направлений векторов напряженности

электрического поля и индукции магнитного поля при возрастании напряженности и индукции представлена на рисунке 239, а и б. При убывании напряженности и индукции соответствующие векторы имеют противоположное направление.

Электрическое и магнитное поля могут существовать не только в веществе, но и в вакууме. Поэтому должно быть возможным распространение электромагнитной волны в вакууме.

Условие возникновения электромагнитных волн.

Изменения магнитного поля происходят при изменении силы тока в проводнике, а сила тока в проводнике изменяется при изменении скорости движения электрических зарядов в нем, т. е. при движении зарядов с ускорением. Следовательно, электромагнитные волны должны возникать при ускоренном движении электрических зарядов.

Скорость распространения электромагнитных волн в вакууме по расчетам Максвелла должна быть равной примерно 300 000 км/с.

Открытие электромагнитных волн.

Электромагнитные волны были впервые экспериментально обнаружены немецким физиком Генрихом Герцем (1857—1894) в 1887 г. В его опытах ускоренное движение электрических зарядов возбуждалось в двух металлических стержнях с шарами на концах. При сообщении шарам достаточно больших разноименных зарядов между ними происходил электрический разряд. В результате шары перезаряжались, между ними вновь проскакивала искра и т. д. — процесс повторялся многократно, т. е. возникали электрические колебания.

Стержни с шарами на концах обладают определенной индуктивностью и электроемкостью и представляют собой электрический колебательный контур. Поместив на некотором расстоянии от этого контура контур из проволоки с двумя шарами на концах, Герц обнаружил, что при проскакивании искры между шарами колебательного контура возникает искра и между шарами на концах витка провода (рис. 240). Следовательно, при электрических колебаниях в открытом контуре в пространстве вокруг него образуется вихревое электрическое поле. Это поле создает электрический ток во вторичном контуре.

При постепенном удалении вторичного контура от первичного искры между шарами возникали только при расположении контура в определенных местах

пространства, разделенных одинаковыми расстояниями. Этот факт Герц объяснил явлением интерференции излученных электромагнитных волн с электромагнитными волнами, отраженными от стены комнаты.

Искры во вторичном контуре наблюдались в тех местах комнаты, в которые первичная и отраженная электромагнитные волны приходили в одинаковой фазе и амплитуда колебаний напряженности вихревого электрического поля была максимальной. Расстояние между двумя соседними интерференционными максимумами равно половине длины волны.

По известной частоте электромагнитных колебаний в контуре и измеренному значению длины К электромагнитной волны Герц определил скорость распространения электромагнитной волны:

Она оказалась равной примерно 300 000 км/с, как и предсказывал Максвелл. Таким образом опыты Герца явились экспериментальным подтверждением гипотезы Максвелла о существовании электромагнитных волн.

Свойства электромагнитных волн.

Свойства электромагнитных волн во многом сходны со свойствами механических волн. На границе раздела двух сред электромагнитные волны частично отражаются, частично проходят во вторую среду. От поверхности диэлектрика электромагнитные волны отражаются слабо, от поверхности металла отражаются почти без потерь (рис. 241).

Закон отражения совпадает с законом отражения механических волн, т. е. угол отражения равен углу падения; падающий луч, отраженный луч и перпендикуляр к поверхности в точке падения лежат в одной плос-. кости. На границе раздела двух сред происходит преломление электромагнитных волн. Закон преломления: отношение синуса угла падения а к синусу угла преломления является величиной постоянной для двух данных сред. Это отношение равно отношению скорости электромагнитных волн в первой среде к скорости во второй среде:

Читайте также:  Как заполнить зажигалку газом

У края преграды или при прохождении электромагнитных волн через отверстие наблюдается явление дифракции волн, т. е. отклонение направления их распространения от прямолинейного (рис. 242).

Когда электромагнитные волны от двух когерентных

источников встречаются в одной точке, то наблюдается явление интерференции.

Опыты с пропусканием электромагнитных волн через систему из двух решеток показывают, что при параллельной ориентации металлических стержней в Двух решетках электромагнитные волны проходят через них (рис. 243), а при взаимно перпендикулярной ориентации стержней волны не проходят. Это доказывает, что электромагнитные волны являются поперечными волнами.

При распространении электромагнитной волны векторы напряженности Е и магнитной индукции В перпендикулярны направлению распространения волны и взаимно перпендикулярны между собой (рис. 244).

Электромагнитными волнами называется процесс распространения в пространстве переменного электромагнитного поля. Теоретически существование электромагнитных волн предсказано английским ученым Максвеллом в 1865 г., а впервые они экспериментально получены немецким ученым Герцем в 1888 г.

Из теории Максвелла вытекают формулы, описывающие колебания векторов и. Плоская монохроматическая электромагнитная волна, распространяющаяся вдоль оси x, описывается уравнениями

Здесь E и H — мгновенные значения, а Em и Hm — амплитудные значения напряженности электрического и магнитного полей, ω — круговая частота, k — волновое число. Векторы и колеблются с одинаковой частотой и фазой, взаимно перпендикулярны и, кроме того, перпендикулярны вектору — скорости распространения волны (рис. 3.7). Т. е. электромагнитные волны поперечны.

В вакууме электромагнитные волны распространяются со скоростью. В среде с диэлектрической проницаемостью ε и магнитной проницаемостью µ скорость распространения электромагнитной волны равна:

Частота электромагнитных колебаний, так же, как и длина волны, могут быть в принципе любыми. Классификация волн по частоте (или длине волны) называется шкалой электромагнитных волн. Электромагнитные волны делятся на несколько видов.

Радиоволны имеют длину волны от 10 3 до 10 -4 м.

Световые волны включают:

инфракрасное излучение,
видимый свет в интервале ,
ультрафиолетовое излучение.

Рентгеновское излучение .

Световые волны — это электромагнитные волны, которые включают в себя инфракрасную, видимую и ультрафиолетовую части спектра. Длины световых волн в вакууме, соответствующие основным цветам видимого спектра, указаны в нижеприведенной таблице. Длина волны дана в нанометрах.

Таблица

Цвет Длина волны, нм Цвет Длина волны, нм
красный 760 — 620 голубой 510 — 480
оранжевый 620 — 590 синий 480 — 450
желтый 590 — 575 фиолетовый 450 — 380
зеленый 575 — 510

Для световых волн характерны те же свойства, что и для электромагнитных волн.

1. Световые волны поперечны.

2. В световой волне колеблются вектора и.

Опыт показывает, что все виды воздействий (физиологическое, фотохимическое, фотоэлектрическое и др.) вызываются колебаниями электрического вектора . Его называют световым вектором.

Амплитуду светового вектора Em часто обозначают буквой A и вместо уравнения (3.30) используют уравнение (3.24).

3. Скорость света в вакууме.

Скорость световой волны в среде определяется по формуле (3.29). Но для прозрачных сред (стекло, вода) обычно.

Для световых волн вводится понятие — абсолютный показатель преломления.

Абсолютным показателем преломления называется отношение скорости света в вакууме к скорости света в данной среде

Из (3.29), с учетом того, что для прозрачных сред , можно записать равенство.

Для вакуума ε = 1 и n = 1. Для любой физической среды n > 1. Например, для воды n = 1,33, для стекла . Среда с большим показателем преломления называется оптически более плотной. Отношение абсолютных показателей преломления называется относительным показателем преломления:

4. Частота световых волн очень велика. Например, для красного света с длиной волны .

При переходе света из одной среды в другую частота света не изменяется, но изменяется скорость и длина волны.

Для вакуума — ; для среды — , тогда

.

Отсюда длина волны света в среде равна отношению длины волны света в вакууме к показателю преломления

5. Поскольку частота световых волн очень велика , то глаз наблюдателя не различает отдельных колебаний, а воспринимает усредненные потоки энергии. Таким образом вводится понятие интенсивности.

Интенсивностью называется отношение средней энергии, переносимой волной, к промежутку времени и к площади площадки, перпендикулярной направлению распространения волны:

Поскольку энергия волны пропорциональна квадрату амплитуды (см. формулу (3.25)), то интенсивность пропорциональна среднему значению квадрата амплитуды

Характеристикой интенсивности света, учитывающей его способность вызывать зрительные ощущения, является световой поток — Ф.

6. Волновая природа света проявляется, например, в таких явлениях, как интерференция и дифракция.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9143 — | 7301 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Читайте также:  Розы замерзли как оживить

Отключите adBlock!
и обновите страницу (F5)

очень нужно

М. Фарадей ввел понятие поля:

вокруг покоящегося заряда возникает электростатическое поле,

вокруг движущихся зарядов (тока) возникает магнитное поле.

В 1830 г. М. Фарадей открыл явление электромагнитной индукции: при изменении магнитного поля возникает вихревое электрическое поле.

Рисунок 2.7 — Вихревое электрическое поле

где,— вектор напряженности электрического поля,— вектор магнитной индукции.

Переменное магнитное поле создает вихревое электрическое поле.

В 1862 г. Д.К. Максвелл выдвинул гипотезу: при изменении электрического поля возникает вихревое магнитное поле.

Возникла идея о едином электромагнитном поле.

Рисунок 2.8 — Единое электромагнитное поле.

Переменное электрическое поле создает вихревое магнитное поле.

Электромагнитное поле — это особая форма материи — совокупность электрических и магнитных полей. Переменные электрические и магнитные поля существуют одновременно и образуют единое электромагнитное поле. Оно материально:

— проявляет себя в действии как на покоящиеся, так и на движущиеся заряды;

— распространяется с большой, но конечной скоростью;

— существует независимо от нашей воли и желаний.

При скорости заряда, равной нулю, существует только электрическое поле. При постоянной скорости заряда возникает электромагнитное поле.

При ускоренном движении заряда происходит излучение электромагнитной волны, кото­рая распространяется в пространстве с конечной скоростью.

Разработка идеи электромагнитных волн принадлежит Максвеллу, но уже Фарадей догадывался об их существовании, хотя побоялся опубликовать работу (она была прочитана более чем через 100 лет после его смерти).

Главное условие возникновения электромагнитной волны — ускоренное движение электрических зарядов.

Что собой представляет электромагнитная волна, легко представить на следующем примере. Если на водную гладь бросить камушек, то на поверхности образуются расходящиеся кругами волны. Они движутся от источника их возникновения (возмущения) с определенной скоростью распространения. Для электромагнитных волн возмущениями являются передвигающиеся в пространстве электрические и магнитные поля. Меняющееся во времени электромагнитное поле обязательно вызывает появление переменного магнитного поля, и наоборот. Эти поля взаимно связаны.

Основным источником спектра электромагнитных волн является звезда Солнце. Часть спектра электромагнитных волн видит глаз человека. Этот спектр лежит в пределах 380. 780 нм (рис. 2.1). В области видимого спектра глаз ощущает свет по-разному. Электромагнитные колебания с различной длиной волн вызывают ощущение света с различной окраской.

Рисунок 2.9 — Спектр электромагнитных волн

Часть спектра электромагнитных волн используется для целей радиотелевизионного вешания и связи. Источник электромагнитных волн — провод (антенна), в котором происходит колебание электрических зарядов. Процесс формирования полей, начавшийся вблизи провода, постепенно, точку за точкой, захватывает все пространство. Чем выше частота переменного тока, проходящего по проводу и порождающего электрическое или магнитное поле, тем интенсивнее создаваемые проводом радиоволны заданной длины.

Ра́дио (лат. radio — излучаю, испускаю лучи ← radius — луч) — разновидность беспроводной связи, при которой в качестве носителя сигнала используются радиоволны, свободно распространяемые в пространстве.

Радиоволны (от радио. ), электромагнитные волны с длиной волны > 500 мкм (частотой 12 Гц).

Радиоволны — это электрические и магнитные поля, меняющиеся во времени. Скорость распространения радиоволн в свободном пространстве составляет 300000 км/с. Исходя из этого, можно определить длину радиоволны (м).

λ=300/f, где f — частота (МГц)

Звуковые колебания воздуха, созданные во время телефонного разговора, преобразуются микрофоном в электрические колебания звуковой частоты, которые по проводам передаются к аппаратуре абонента. Там, на другом конце линии, они с помощью излучателя телефона преобразуются в колебания воздуха, воспринимаемые абонентом как звуки. В телефонии средством связи цепи являются провода, в радиовещании — радиоволны.

«Сердцем» передатчика любой радиостанции является генератор — устройство, вырабатывающее колебания высокой, но строго постоянной для данной радиостанции частоты. Эти колебания радиочастоты, усиленные до необходимой мощности, поступают в антенну и возбуждают в окружающем ее пространстве электромагнитные колебания точно такой же частоты — радиоволны. Скорость удаления радиоволн от антенны радиостанции равна скорости света: 300 000 км/с, что почти в миллион раз быстрее распространения звука в воздухе. Это значит, что если на Московской радиовещательной станции в некоторый момент времени включили передатчик, то ее радиоволны меньше чем за 1 /30 с дойдут до Владивостока, а звук за это время успеет распространиться всего, лишь на 10— 11 м.

Радиоволны распространяются не только в воздухе, но и там, где его нет, например, в космическом пространстве. Этим они отличаются от звуковых волн, для которых совершенно необходим воздух или какая-либо другая плотная среда, например вода.

Читайте также:  Обозначение счетчика на схеме электрической принципиальной

Электромагнитная волна – распространяющееся в пространстве электромагнитное поле (колебания векторов ). Вблизи заряда электрическое и магнитное поля изменяются со сдвигом фаз p/2.

Рисунок 2.10 — Единое электромагнитное поле.

На большом расстоянии от заряда электрическое и магнитное поля изменяются синфазно.

Рисунок 2.11 — Синфазное изменение электрического и магнитного полей.

Электромагнитная волна поперечна. Направление скорости электромагнитной волны совпадает с направлением движения правого винта при повороте ручки буравчика вектора к вектору .

Рисунок 2.12 — Электромагнитная волна.

Причем в электромагнитной волне выполняется соотношение , где с – скорость света в вакууме.

Максвелл теоретически рассчитал энергию и скорость электромагнитных волн.

Таким образом, энергия волны прямо пропорциональна четвертой степени частоты. Значит, чтобы легче зафиксировать волну, необходимо, чтобы она была высокой частоты.

Электромагнитные волны были открыты Г. Герцем (1887).

Закрытый колебательный контур электромагнитных волн не излучает: вся энергия электрического поля конденсатора переходит в энергию магнитного поля катушки. Частота колебаний определяется параметрами колебательного контура: .

Рисунок 2.13 — Колебательный контур.

Для увеличения частоты необходимо уменьшить L и C, т.е. развернуть катушку до прямого провода и, т.к. , уменьшить площадь пластин и развести их на максимальное расстояние. Отсюда видно, что мы получим, по существу, прямой проводник.

Такой прибор называется вибратором Герца. Середина разрезается и подсоединяется к высокочастотному трансформатору. Между концами проводов, на которых закрепляются маленькие шаровые кондукторы, проскакивает электрическая искра, которая и является источником электромагнитной волны. Волна распространяется так, что вектор напряженности электрического поля колеблется в плоскости, в которой расположен проводник.

Рисунок 2.14 — Вибратор Герца.

Если параллельно излучателю расположить такой же проводник (антенну), то заряды в нем придут в колебательное движение и между кондукторами проскакивают слабые искры.

Герц обнаружил электромагнитные волны на опыте и измерил их скорость, которая совпала с рассчитанной Максвеллом и равной с=3 . 10 8 м/с.

Переменное электрическое поле порождает переменное магнитное поле, которое, в свою очередь, порождает переменное электрическое поле, то есть антенна, возбудившее одно из полей, вызывает появление единого электромагнитного поля. Важнейшее свойство этого поля в том, что оно распространяется в виде электромагнитных волн.

Скорость распространения электромагнитных волн в среде без потерь зависит от относительно диэлектрической и магнитной проницаемости среды. Для воздуха магнитная проницаемость среды равняется единице, следовательно, скорость распространения электромагнитных волн в этом случае равна скорости света.

Антенной может служить вертикальный провод, питаемый от генератора высокой частоты. Генератор затрачивает энергию на ускорение движения свободных электронов в проводнике, а эта энергия преобразуется в переменное электромагнитное поле, то есть электромагнитные волны. Чем больше частота тока генератора, тем быстрее изменяется электромагнитное поле и интенсивнее излечение волн.

С проводом антенны связаны как электрическое поле, силовые линии которого начинаются на положительных и кончаются на отрицательных зарядах, так и магнитное поле, линии которого замыкаются вокруг тока провода. Чем меньше период колебаний, тем меньше времени остается для возвращения энергии связанных полей в провод (то есть, к генератору) и тем больше переходит ее в свободные поля, которые распространяются далее в виде электромагнитных волн. Эффективное излучения электромагнитных волн происходит при условии соизмеримости длины волны и длины излучающего провода.

Таким образом, можно определить, что радиоволна — это не связанное с излучателем и каналообразующими устройствами электромагнитное поле, свободно распространяющееся в пространстве в виде волны с частотой колебаний от 10 -3 до 10 12 Гц.

Колебания электронов в антенне создаются источником периодически изменяющейся ЭДС с периодом Т. Если в некоторый момент поле у антенны имело максимальное значение, то такое же значение оно будет иметь спустя время Т. За это время существовавшее в начальный момент у антенны электромагнитное поле переместится на расстояние

Минимальное расстояние между двумя точками пространства, поле в которых имеет одинаковое значение, называется длиной волны. Как следует из ( 1 ), длина волны λ зависит от скорости ее распространения и периода колебаний электронов в антенне. Так как частота тока f = 1 / T, то длина волны λ = υ / f .

Радиолиния включает в себя следующие основные части:

• Среда, в которой распространяются радиоволны.

Передатчик и приемник являются управляемыми элементами радиолинии, так как можно увеличить мощность передатчика, подключить более эффективную антенну и увеличить чувствительность приемника. Среда является неуправляемым элементом радиолинии.

Отличие линии радиосвязи от проводных линий заключается в том, что в проводных линиях в качестве связующего звена используются провода или кабель, которые являются управляемыми элементами (можно изменить их электрические параметры).

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
Adblock detector